
Customer: Prometeus Labs Ventures
Date: April 5th, 2022

This document may contain confidential information about IT systems and
the intellectual property of the Customer as well as information about
potential vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by
the Customer, or it can be disclosed publicly after all vulnerabilities
are fixed — upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for
Prometeus Labs Ventures.

Approved By Evgeniy Bezuglyi | SC Department Head at Hacken OU

Type of Contracts ERC20 token; Staking

Platform EVM

Language Solidity

Methods Architecture Review, Functional Testing, Computer-Aided
Verification, Manual Review

Website https://prometeus.io

Timeline 09.03.2022 – 05.04.2022

Changelog
15.03.2022 – Initial Review
04.04.2022 - Revising
05.03.2022 – Revising

www.hacken.io

https://prometeus.io

Table of contents
Introduction 4

Scope 4

Executive Summary 6

Severity Definitions 8

Findings 9

Recommendations 12

Disclaimers 13

www.hacken.io

Introduction

Hacken OÜ (Consultant) was contracted by Prometeus Labs Ventures (Customer)
to conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of the Customer's smart
contracts.

Scope

The scope of the project is smart contracts in the repository:
Repository:

https://github.com/Prometeus-Network/takeus-contracts
Commit:

bc190ee239733b819d5a7976e875a4babf2a82f1
Technical Documentation: Yes:
https://doc.clickup.com/d/h/kj9eb-188/e305b75eb0fe384
JS tests: Yes:
https://github.com/Prometeus-Network/takeus-contracts/tree/main/test
Contracts:

SafeVault/accessors/SimulateTxAccessor.sol
SafeVault/base/Executor.sol
SafeVault/base/FallbackManager.sol
SafeVault/base/OwnerManager.sol
SafeVault/common/EtherPaymentFallback.sol
SafeVault/common/Enum.sol
SafeVault/common/SecuredTokenTransfer.sol
SafeVault/common/SelfAuthorized.sol
SafeVault/common/SignatureDecoder.sol
SafeVault/common/Singleton.sol
SafeVault/common/StorageAccessible.sol
SafeVault/external/GnosisSafeMath.sol
SafeVault/handler/CompatibilityFallbackHandler.sol
SafeVault/handler/DefaultCallbackHandler.sol
SafeVault/handler/HandlerContext.sol
SafeVault/proxies/GnosisSafeProxy.sol
SafeVault/proxies/IProxyCreationCallback.sol
SafeVault/proxies/SafeVaultProxyFactory.sol
SafeVault/libraries/CreateCall.sol
SafeVault/libraries/GnosisSafeStorage.sol
SafeVault/libraries/SignMessage.sol
SafeVault/libraries/MultiSend.sol
SafeVault/libraries/MultiSendCallOnly.sol
SafeVault/SafeVault.sol
VaultManager.sol
TakeUsMarketplace.sol

www.hacken.io

https://github.com/Prometeus-Network/takeus-contracts
https://doc.clickup.com/d/h/kj9eb-188/e305b75eb0fe384
https://github.com/Prometeus-Network/takeus-contracts/tree/main/test

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that
are considered:

Category Check Item
Code review ▪ Reentrancy

▪ Ownership Takeover
▪ Timestamp Dependence
▪ Gas Limit and Loops
▪ Transaction-Ordering Dependence
▪ Style guide violation
▪ EIP standards violation
▪ Unchecked external call
▪ Unchecked math
▪ Unsafe type inference
▪ Implicit visibility level
▪ Deployment Consistency
▪ Repository Consistency

Functional review ▪ Business Logics Review
▪ Functionality Checks
▪ Access Control & Authorization
▪ Escrow manipulation
▪ Token Supply manipulation
▪ Assets integrity
▪ User Balances manipulation
▪ Data Consistency
▪ Kill-Switch Mechanism

www.hacken.io

Executive Summary

The score measurements details can be found in the corresponding section of
the methodology.

Documentation quality
The Customer provided some functional requirements and a few technical
requirements. However, the project is based on well-documented contracts.
The total Documentation Quality score is 7 out of 10.

Code quality
The total CodeQuality score is 7 out of 10. Code duplications. Unit tests
provided. The code is dirty. Hardcodes in the code.

Architecture quality
The architecture quality score is 8 out of 10. The logic is split correctly
into corresponding files. There is a repeating in the functionality of
functions.

Security score
As a result of the audit, security engineers found 1 low severity issue.
The security score is 10 out of 10. All found issues are displayed in the
“Issues overview” section.

Summary
According to the assessment, the Customer's smart contract has the
following score: 9.2

www.hacken.io

https://docs.google.com/document/d/1vpWmShFjGVkwHgX4rEmFhRcmnOZ-k6xEckkQjZkCmgE/edit#heading=h.1ci93xb

Graph 1. The distribution of vulnerabilities after the audit.

www.hacken.io

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High

High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium
Medium-level vulnerabilities are important to fix;
however, they cannot lead to assets loss or data
manipulations.

Low
Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that cannot
have a significant impact on execution

www.hacken.io

Findings

Critical

1. Incorrect balance checking

Contract:

Functions:

Recommendation:

Status: Fixed (Revised Commit: bc190ee)

2. An incorrect value used for a lender address

Contract:

Function:

Recommendation:

Status: Fixed (Revised Commit: 8aa4510)

High

1. Tests failing

Scope: testing

Recommendation:

Status: Tests are successful when running one by one (Revised Commit:
8aa4510)

2. Possible logic inconsistency

www.hacken.io

Contract:

Functions:

Recommendation:

Status: Acknowledged. The customer says it should be that way.
(Revised Commit: bc190ee)

Medium

1. Contracts that lock Ether

Contract:

Functions:

Recommendation:

Status: Added a withdrawal function (Revised Commit: 8aa4510)

Low

1. No events emitted

Contract:

Functions:

Recommendation:

Status: Fixed (Revised Commit: 8aa4510)

2. Using of time unit suffixes

Contract:

Functions:

Recommendation:

Status: Fixed (Revised Commit: 8aa4510)

www.hacken.io

3. Duplicated logic

Contract:

Functions:

Recommendation:

Status: Partly Fixed (Revised Commit: bc190ee)

4. Implicit visibility declaration

Contract:

Constants:

Recommendation:

Status: Fixed (Revised Commit: bc190ee)

5. Hardcoded address declaration

Contract:

Constant:

Recommendation:

Status: Will not Fix (Revised Commit: bc190ee)

6. Duplicated code

Contract:

Functions:

Recommendation: optimize the code to remove duplications.

Status: Partly fixed (Revised Commit: bc190ee)

7. Duplicated code

www.hacken.io

Contract:

Functions:

Recommendation:

Status: Partly fixed (Revised Commit: bc190ee)

www.hacken.io

Recommendations

1. Revise the logic of the TakeUsMarketplace.
2. The logic of the SafeVault.checkIfNFTisLocked could be cleared.
3. Cover code by unit and integration tests.

www.hacken.io

Disclaimers

Hacken Disclaimer
The smart contracts given for audit have been analyzed by the best industry
practices at the date of this report, with cybersecurity vulnerabilities
and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on the security of the code. It
also cannot be considered a sufficient assessment regarding the utility and
safety of the code, bug-free status, or any other contract statements.
While we have done our best in conducting the analysis and producing this
report, it is important to note that you should not rely on this report
only — we recommend proceeding with several independent audits and a public
bug bounty program to ensure the security of smart contracts.

Technical Disclaimer
Smart contracts are deployed and executed on a blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have vulnerabilities that can lead to hacks. Thus, the audit
cannot guarantee the explicit security of the audited smart contracts.

www.hacken.io

